sage: H = DirichletGroup(588)
pari: g = idealstar(,588,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 168 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{42}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{588}(295,\cdot)$, $\chi_{588}(197,\cdot)$, $\chi_{588}(493,\cdot)$ |
First 32 of 168 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{588}(1,\cdot)\) | 588.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{588}(5,\cdot)\) | 588.be | 42 | no | \(1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{588}(11,\cdot)\) | 588.bb | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{588}(13,\cdot)\) | 588.v | 14 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(-1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(-1\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{588}(17,\cdot)\) | 588.be | 42 | no | \(1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{588}(19,\cdot)\) | 588.o | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{588}(23,\cdot)\) | 588.bb | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{588}(25,\cdot)\) | 588.y | 21 | no | \(1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{588}(29,\cdot)\) | 588.w | 14 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(1\) | \(e\left(\frac{5}{7}\right)\) |
\(\chi_{588}(31,\cdot)\) | 588.o | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{588}(37,\cdot)\) | 588.y | 21 | no | \(1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{588}(41,\cdot)\) | 588.t | 14 | no | \(1\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(-1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(-1\) | \(e\left(\frac{3}{7}\right)\) |
\(\chi_{588}(43,\cdot)\) | 588.s | 14 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(-1\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{588}(47,\cdot)\) | 588.bf | 42 | yes | \(-1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{588}(53,\cdot)\) | 588.z | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{588}(55,\cdot)\) | 588.x | 14 | no | \(1\) | \(1\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{4}{7}\right)\) |
\(\chi_{588}(59,\cdot)\) | 588.bf | 42 | yes | \(-1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{588}(61,\cdot)\) | 588.bc | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{8}{21}\right)\) |
\(\chi_{588}(65,\cdot)\) | 588.z | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{588}(67,\cdot)\) | 588.l | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{588}(71,\cdot)\) | 588.u | 14 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(-1\) | \(e\left(\frac{2}{7}\right)\) |
\(\chi_{588}(73,\cdot)\) | 588.bc | 42 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{588}(79,\cdot)\) | 588.l | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{588}(83,\cdot)\) | 588.r | 14 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(1\) | \(e\left(\frac{6}{7}\right)\) |
\(\chi_{588}(85,\cdot)\) | 588.q | 7 | no | \(1\) | \(1\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{1}{7}\right)\) |
\(\chi_{588}(89,\cdot)\) | 588.be | 42 | no | \(1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{588}(95,\cdot)\) | 588.bb | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{588}(97,\cdot)\) | 588.d | 2 | no | \(-1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
\(\chi_{588}(101,\cdot)\) | 588.be | 42 | no | \(1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{588}(103,\cdot)\) | 588.ba | 42 | no | \(1\) | \(1\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{588}(107,\cdot)\) | 588.bb | 42 | yes | \(1\) | \(1\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{588}(109,\cdot)\) | 588.y | 21 | no | \(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) |