sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5850, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([2,6,3]))
pari:[g,chi] = znchar(Mod(749,5850))
\(\chi_{5850}(749,\cdot)\)
\(\chi_{5850}(3749,\cdot)\)
\(\chi_{5850}(4649,\cdot)\)
\(\chi_{5850}(5699,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3251,3277,2251)\) → \((e\left(\frac{1}{6}\right),-1,i)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 5850 }(749, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)