sage: H = DirichletGroup(576)
pari: g = idealstar(,576,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 192 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{2}\times C_{48}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{576}(127,\cdot)$, $\chi_{576}(325,\cdot)$, $\chi_{576}(65,\cdot)$ |
First 32 of 192 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{576}(1,\cdot)\) | 576.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{576}(5,\cdot)\) | 576.bn | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(7,\cdot)\) | 576.bh | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{576}(11,\cdot)\) | 576.bl | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{576}(13,\cdot)\) | 576.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(17,\cdot)\) | 576.j | 4 | no | \(-1\) | \(1\) | \(i\) | \(-1\) | \(i\) | \(i\) | \(-1\) | \(i\) | \(1\) | \(-1\) | \(-i\) | \(1\) |
\(\chi_{576}(19,\cdot)\) | 576.bf | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) |
\(\chi_{576}(23,\cdot)\) | 576.bj | 24 | no | \(1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(25,\cdot)\) | 576.bg | 24 | no | \(1\) | \(1\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(-1\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{576}(29,\cdot)\) | 576.bn | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(-i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{576}(31,\cdot)\) | 576.t | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(35,\cdot)\) | 576.be | 16 | no | \(1\) | \(1\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(-i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(1\) |
\(\chi_{576}(37,\cdot)\) | 576.bd | 16 | no | \(1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(-1\) |
\(\chi_{576}(41,\cdot)\) | 576.bi | 24 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{576}(43,\cdot)\) | 576.bk | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(-i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{576}(47,\cdot)\) | 576.y | 12 | no | \(1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{576}(49,\cdot)\) | 576.bb | 12 | no | \(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(1\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{576}(53,\cdot)\) | 576.bc | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(-1\) |
\(\chi_{576}(55,\cdot)\) | 576.u | 8 | no | \(-1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(-1\) |
\(\chi_{576}(59,\cdot)\) | 576.bl | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(i\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{576}(61,\cdot)\) | 576.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(i\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{576}(65,\cdot)\) | 576.q | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{576}(67,\cdot)\) | 576.bk | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(i\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{576}(71,\cdot)\) | 576.w | 8 | no | \(1\) | \(1\) | \(e\left(\frac{1}{8}\right)\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(-i\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(-1\) |
\(\chi_{576}(73,\cdot)\) | 576.v | 8 | no | \(1\) | \(1\) | \(e\left(\frac{3}{8}\right)\) | \(-i\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(-1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(-i\) | \(e\left(\frac{1}{8}\right)\) | \(1\) |
\(\chi_{576}(77,\cdot)\) | 576.bn | 48 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(79,\cdot)\) | 576.z | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{576}(83,\cdot)\) | 576.bl | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(-i\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{576}(85,\cdot)\) | 576.bm | 48 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(-i\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{576}(89,\cdot)\) | 576.x | 8 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(1\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(i\) | \(e\left(\frac{7}{8}\right)\) | \(1\) |
\(\chi_{576}(91,\cdot)\) | 576.bf | 16 | no | \(-1\) | \(1\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(-i\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(1\) |
\(\chi_{576}(95,\cdot)\) | 576.p | 6 | no | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) |