Properties

Label 572.49
Modulus $572$
Conductor $143$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(572, base_ring=CyclotomicField(30))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,12,25]))
 
pari: [g,chi] = znchar(Mod(49,572))
 

Basic properties

Modulus: \(572\)
Conductor: \(143\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{143}(49,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 572.bq

\(\chi_{572}(49,\cdot)\) \(\chi_{572}(69,\cdot)\) \(\chi_{572}(225,\cdot)\) \(\chi_{572}(257,\cdot)\) \(\chi_{572}(361,\cdot)\) \(\chi_{572}(433,\cdot)\) \(\chi_{572}(465,\cdot)\) \(\chi_{572}(537,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.69503752297329754905479727341904896738456941915804813.1

Values on generators

\((287,365,353)\) → \((1,e\left(\frac{2}{5}\right),e\left(\frac{5}{6}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(15\)\(17\)\(19\)\(21\)\(23\)\(25\)
\(1\)\(1\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{11}{30}\right)\)\(-1\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{5}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 572 }(49,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{572}(49,\cdot)) = \sum_{r\in \Z/572\Z} \chi_{572}(49,r) e\left(\frac{r}{286}\right) = 23.6448959225+3.5942866907i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 572 }(49,·),\chi_{ 572 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{572}(49,\cdot),\chi_{572}(1,\cdot)) = \sum_{r\in \Z/572\Z} \chi_{572}(49,r) \chi_{572}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 572 }(49,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{572}(49,·)) = \sum_{r \in \Z/572\Z} \chi_{572}(49,r) e\left(\frac{1 r + 2 r^{-1}}{572}\right) = -0.0 \)