Properties

Label 572.25
Modulus $572$
Conductor $143$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(572, base_ring=CyclotomicField(10))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,8,5]))
 
pari: [g,chi] = znchar(Mod(25,572))
 

Basic properties

Modulus: \(572\)
Conductor: \(143\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{143}(25,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 572.x

\(\chi_{572}(25,\cdot)\) \(\chi_{572}(181,\cdot)\) \(\chi_{572}(389,\cdot)\) \(\chi_{572}(493,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.79589952003133.1

Values on generators

\((287,365,353)\) → \((1,e\left(\frac{4}{5}\right),-1)\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(15\)\(17\)\(19\)\(21\)\(23\)\(25\)
\(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(-1\)\(1\)\(e\left(\frac{2}{5}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 572 }(25,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{572}(25,\cdot)) = \sum_{r\in \Z/572\Z} \chi_{572}(25,r) e\left(\frac{r}{286}\right) = 23.9097630035+-0.5685359416i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 572 }(25,·),\chi_{ 572 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{572}(25,\cdot),\chi_{572}(1,\cdot)) = \sum_{r\in \Z/572\Z} \chi_{572}(25,r) \chi_{572}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 572 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{572}(25,·)) = \sum_{r \in \Z/572\Z} \chi_{572}(25,r) e\left(\frac{1 r + 2 r^{-1}}{572}\right) = -0.0 \)