Properties

Label 570.17
Modulus $570$
Conductor $285$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(570, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([18,9,20]))
 
pari: [g,chi] = znchar(Mod(17,570))
 

Basic properties

Modulus: \(570\)
Conductor: \(285\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{285}(17,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 570.bi

\(\chi_{570}(17,\cdot)\) \(\chi_{570}(23,\cdot)\) \(\chi_{570}(47,\cdot)\) \(\chi_{570}(137,\cdot)\) \(\chi_{570}(233,\cdot)\) \(\chi_{570}(263,\cdot)\) \(\chi_{570}(347,\cdot)\) \(\chi_{570}(377,\cdot)\) \(\chi_{570}(443,\cdot)\) \(\chi_{570}(473,\cdot)\) \(\chi_{570}(503,\cdot)\) \(\chi_{570}(557,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.240152953708250935530977810544721792914847414233751595020294189453125.1

Values on generators

\((191,457,211)\) → \((-1,i,e\left(\frac{5}{9}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{1}{3}\right)\)\(i\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{23}{36}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 570 }(17,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{570}(17,\cdot)) = \sum_{r\in \Z/570\Z} \chi_{570}(17,r) e\left(\frac{r}{285}\right) = -16.8802482009+-0.239208438i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 570 }(17,·),\chi_{ 570 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{570}(17,\cdot),\chi_{570}(1,\cdot)) = \sum_{r\in \Z/570\Z} \chi_{570}(17,r) \chi_{570}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 570 }(17,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{570}(17,·)) = \sum_{r \in \Z/570\Z} \chi_{570}(17,r) e\left(\frac{1 r + 2 r^{-1}}{570}\right) = 0.0 \)