Properties

Label 570.13
Modulus $570$
Conductor $95$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(570, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,27,10]))
 
pari: [g,chi] = znchar(Mod(13,570))
 

Basic properties

Modulus: \(570\)
Conductor: \(95\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{95}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 570.bh

\(\chi_{570}(13,\cdot)\) \(\chi_{570}(67,\cdot)\) \(\chi_{570}(97,\cdot)\) \(\chi_{570}(127,\cdot)\) \(\chi_{570}(193,\cdot)\) \(\chi_{570}(223,\cdot)\) \(\chi_{570}(307,\cdot)\) \(\chi_{570}(337,\cdot)\) \(\chi_{570}(433,\cdot)\) \(\chi_{570}(523,\cdot)\) \(\chi_{570}(547,\cdot)\) \(\chi_{570}(553,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: \(\Q(\zeta_{95})^+\)

Values on generators

\((191,457,211)\) → \((1,-i,e\left(\frac{5}{18}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(i\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{25}{36}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 570 }(13,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{570}(13,\cdot)) = \sum_{r\in \Z/570\Z} \chi_{570}(13,r) e\left(\frac{r}{285}\right) = -4.6126194284+8.5862530832i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 570 }(13,·),\chi_{ 570 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{570}(13,\cdot),\chi_{570}(1,\cdot)) = \sum_{r\in \Z/570\Z} \chi_{570}(13,r) \chi_{570}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 570 }(13,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{570}(13,·)) = \sum_{r \in \Z/570\Z} \chi_{570}(13,r) e\left(\frac{1 r + 2 r^{-1}}{570}\right) = 11.9671160231+1.0469869871i \)