Properties

Modulus $5616$
Structure \(C_{2}\times C_{2}\times C_{12}\times C_{36}\)
Order $1728$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(5616)
 
Copy content pari:g = idealstar(,5616,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 1728
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{12}\times C_{36}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{5616}(703,\cdot)$, $\chi_{5616}(4213,\cdot)$, $\chi_{5616}(2081,\cdot)$, $\chi_{5616}(3889,\cdot)$

First 32 of 1728 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{5616}(1,\cdot)\) 5616.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{5616}(5,\cdot)\) 5616.kv 36 yes \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5616}(7,\cdot)\) 5616.lq 36 no \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(1\)
\(\chi_{5616}(11,\cdot)\) 5616.mg 36 yes \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5616}(17,\cdot)\) 5616.cr 6 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{5616}(19,\cdot)\) 5616.hn 12 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5616}(23,\cdot)\) 5616.is 18 no \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(-1\)
\(\chi_{5616}(25,\cdot)\) 5616.ii 18 no \(1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{5616}(29,\cdot)\) 5616.jv 36 yes \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5616}(31,\cdot)\) 5616.lp 36 no \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{5616}(35,\cdot)\) 5616.hd 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5616}(37,\cdot)\) 5616.hj 12 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5616}(41,\cdot)\) 5616.kt 36 no \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(i\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(1\)
\(\chi_{5616}(43,\cdot)\) 5616.kl 36 yes \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(-i\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(i\)
\(\chi_{5616}(47,\cdot)\) 5616.kg 36 no \(-1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5616}(49,\cdot)\) 5616.if 18 no \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(1\)
\(\chi_{5616}(53,\cdot)\) 5616.z 4 no \(-1\) \(1\) \(-i\) \(-1\) \(-i\) \(-1\) \(-i\) \(1\) \(-1\) \(i\) \(1\) \(i\)
\(\chi_{5616}(55,\cdot)\) 5616.bw 6 no \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5616}(59,\cdot)\) 5616.mg 36 yes \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5616}(61,\cdot)\) 5616.kn 36 yes \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{2}{3}\right)\) \(i\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(i\)
\(\chi_{5616}(67,\cdot)\) 5616.kz 36 yes \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(-i\)
\(\chi_{5616}(71,\cdot)\) 5616.fw 12 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\)
\(\chi_{5616}(73,\cdot)\) 5616.fm 12 no \(-1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(-i\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(-1\)
\(\chi_{5616}(77,\cdot)\) 5616.lh 36 yes \(-1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{5616}(79,\cdot)\) 5616.im 18 no \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)
\(\chi_{5616}(83,\cdot)\) 5616.ku 36 yes \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{5616}(85,\cdot)\) 5616.jo 36 yes \(-1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{5616}(89,\cdot)\) 5616.fs 12 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5616}(95,\cdot)\) 5616.hw 18 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5616}(97,\cdot)\) 5616.lr 36 no \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(1\)
\(\chi_{5616}(101,\cdot)\) 5616.ju 36 yes \(-1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{5616}(103,\cdot)\) 5616.ik 18 no \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{3}\right)\)
Click here to search among the remaining 1696 characters.