# Properties

 Conductor 561 Order 2 Real Yes Primitive No Parity Even Orbit Label 5610.k

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(5610)

sage: chi = H[1121]

pari: [g,chi] = znchar(Mod(1121,5610))

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 561 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 2 Real = Yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = No sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = Even Orbit label = 5610.k Orbit index = 11

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Inducingprimitive character

$$\chi_{561}(560,\cdot)$$ = $$\displaystyle\left(\frac{561}{\bullet}\right)$$

## Values on generators

$$(1871,3367,1531,3301)$$ → $$(-1,1,-1,-1)$$

## Values

 -1 1 7 13 19 23 29 31 37 41 43 47 $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$ $$-1$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q$$