Conductor 561
Order 10
Real No
Primitive No
Parity Even
Orbit Label

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(5610)
sage: chi = H[101]
pari: [g,chi] = znchar(Mod(101,5610))

Basic properties

sage: chi.conductor()
pari: znconreyconductor(g,chi)
Conductor = 561
sage: chi.multiplicative_order()
pari: charorder(g,chi)
Order = 10
Real = No
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
Primitive = No
sage: chi.is_odd()
pari: zncharisodd(g,chi)
Parity = Even
Orbit label =
Orbit index = 64

Galois orbit

sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

\(\chi_{5610}(101,\cdot)\) \(\chi_{5610}(611,\cdot)\) \(\chi_{5610}(2141,\cdot)\) \(\chi_{5610}(3671,\cdot)\)

Inducing primitive character


Values on generators

\((1871,3367,1531,3301)\) → \((-1,1,e\left(\frac{1}{10}\right),-1)\)


value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{5})\)