Properties

Label 5520.em
Modulus $5520$
Conductor $1840$
Order $44$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(5520, base_ring=CyclotomicField(44))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,33,0,22,8]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(349,5520))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5520\)
Conductor: \(1840\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1840.ck
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{5520}(349,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{7}{44}\right)\)
\(\chi_{5520}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{1}{44}\right)\)
\(\chi_{5520}(949,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{37}{44}\right)\)
\(\chi_{5520}(1189,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{25}{44}\right)\)
\(\chi_{5520}(1429,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{17}{44}\right)\)
\(\chi_{5520}(1549,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{27}{44}\right)\)
\(\chi_{5520}(1669,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{41}{44}\right)\)
\(\chi_{5520}(1789,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{43}{44}\right)\)
\(\chi_{5520}(2509,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{31}{44}\right)\)
\(\chi_{5520}(2749,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{35}{44}\right)\)
\(\chi_{5520}(3109,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{29}{44}\right)\)
\(\chi_{5520}(3229,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{23}{44}\right)\)
\(\chi_{5520}(3709,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{15}{44}\right)\)
\(\chi_{5520}(3949,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{3}{44}\right)\)
\(\chi_{5520}(4189,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{39}{44}\right)\)
\(\chi_{5520}(4309,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{5}{44}\right)\)
\(\chi_{5520}(4429,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{19}{44}\right)\)
\(\chi_{5520}(4549,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{21}{44}\right)\)
\(\chi_{5520}(5269,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{9}{44}\right)\)
\(\chi_{5520}(5509,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{13}{44}\right)\)