Properties

 Label 5520.eg Modulus $5520$ Conductor $552$ Order $22$ Real no Primitive no Minimal no Parity even

Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(5520, base_ring=CyclotomicField(22))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([11,11,11,0,2]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(71,5520))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Basic properties

 Modulus: $$5520$$ Conductor: $$552$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$22$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 552.x sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Related number fields

 Field of values: $$\Q(\zeta_{11})$$ Fixed field: 22.22.2611441967281400084968119933496263205453824.1

Characters in Galois orbit

Character $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$
$$\chi_{5520}(71,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$
$$\chi_{5520}(311,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$
$$\chi_{5520}(791,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$
$$\chi_{5520}(1271,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$
$$\chi_{5520}(1511,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$
$$\chi_{5520}(1751,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$
$$\chi_{5520}(1991,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$
$$\chi_{5520}(3431,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$
$$\chi_{5520}(4631,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$
$$\chi_{5520}(4871,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$