# Properties

 Label 5520.dp Modulus $5520$ Conductor $184$ Order $22$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(5520, base_ring=CyclotomicField(22))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,11,0,0,18]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(121,5520))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$5520$$ Conductor: $$184$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$22$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 184.p sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{11})$$ Fixed field: 22.22.14741666340843480753092741810452692992.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$
$$\chi_{5520}(121,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$
$$\chi_{5520}(361,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$
$$\chi_{5520}(601,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$
$$\chi_{5520}(841,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$
$$\chi_{5520}(2281,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$
$$\chi_{5520}(3481,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$
$$\chi_{5520}(3721,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{9}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{5}{22}\right)$$
$$\chi_{5520}(4441,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{17}{22}\right)$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{6}{11}\right)$$ $$e\left(\frac{9}{22}\right)$$ $$e\left(\frac{1}{11}\right)$$ $$e\left(\frac{21}{22}\right)$$
$$\chi_{5520}(4681,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{3}{11}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{5}{22}\right)$$ $$e\left(\frac{4}{11}\right)$$ $$e\left(\frac{3}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{10}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$
$$\chi_{5520}(5161,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{7}{11}\right)$$ $$e\left(\frac{13}{22}\right)$$ $$e\left(\frac{19}{22}\right)$$ $$e\left(\frac{2}{11}\right)$$ $$e\left(\frac{7}{22}\right)$$ $$e\left(\frac{15}{22}\right)$$ $$e\left(\frac{8}{11}\right)$$ $$e\left(\frac{1}{22}\right)$$ $$e\left(\frac{5}{11}\right)$$ $$e\left(\frac{17}{22}\right)$$