# Properties

 Label 5520.1333 Modulus $5520$ Conductor $1840$ Order $4$ Real no Primitive no Minimal yes Parity even

# Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(5520, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,1,0,3,2]))

pari: [g,chi] = znchar(Mod(1333,5520))

## Basic properties

 Modulus: $$5520$$ Conductor: $$1840$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{1840}(1333,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 5520.ci

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.135424000.2

## Values on generators

$$(4831,1381,1841,4417,1201)$$ → $$(1,i,1,-i,-1)$$

## Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$-i$$ $$-i$$ $$1$$ $$i$$ $$-i$$ $$i$$ $$1$$ $$-1$$ $$-1$$ $$1$$
 value at e.g. 2