Properties

Label 5520.5153
Modulus $5520$
Conductor $15$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(5520, base_ring=CyclotomicField(4))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,0,2,3,0]))
 
pari: [g,chi] = znchar(Mod(5153,5520))
 

Basic properties

Modulus: \(5520\)
Conductor: \(15\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(4\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{15}(8,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5520.br

\(\chi_{5520}(737,\cdot)\) \(\chi_{5520}(5153,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-1}) \)
Fixed field: \(\Q(\zeta_{15})^+\)

Values on generators

\((4831,1381,1841,4417,1201)\) → \((1,1,-1,-i,1)\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(-i\)\(-1\)\(i\)\(i\)\(-1\)\(1\)\(1\)\(-i\)\(-1\)\(i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5520 }(5153,a) \;\) at \(\;a = \) e.g. 2