Properties

Label 5520.3161
Modulus $5520$
Conductor $552$
Order $22$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(5520, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,11,11,0,3]))
 
pari: [g,chi] = znchar(Mod(3161,5520))
 

Basic properties

Modulus: \(5520\)
Conductor: \(552\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{552}(125,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5520.ee

\(\chi_{5520}(281,\cdot)\) \(\chi_{5520}(521,\cdot)\) \(\chi_{5520}(1721,\cdot)\) \(\chi_{5520}(3161,\cdot)\) \(\chi_{5520}(3401,\cdot)\) \(\chi_{5520}(3641,\cdot)\) \(\chi_{5520}(3881,\cdot)\) \(\chi_{5520}(4361,\cdot)\) \(\chi_{5520}(4841,\cdot)\) \(\chi_{5520}(5081,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: 22.22.60063165247472201954266758470414053725437952.1

Values on generators

\((4831,1381,1841,4417,1201)\) → \((1,-1,-1,1,e\left(\frac{3}{22}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{9}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{9}{11}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{2}{11}\right)\)
value at e.g. 2