Properties

Label 5520.1523
Modulus $5520$
Conductor $5520$
Order $44$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(5520, base_ring=CyclotomicField(44))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([22,33,22,33,2]))
 
pari: [g,chi] = znchar(Mod(1523,5520))
 

Basic properties

Modulus: \(5520\)
Conductor: \(5520\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(44\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5520.fk

\(\chi_{5520}(83,\cdot)\) \(\chi_{5520}(107,\cdot)\) \(\chi_{5520}(563,\cdot)\) \(\chi_{5520}(803,\cdot)\) \(\chi_{5520}(1307,\cdot)\) \(\chi_{5520}(1523,\cdot)\) \(\chi_{5520}(1763,\cdot)\) \(\chi_{5520}(2747,\cdot)\) \(\chi_{5520}(2963,\cdot)\) \(\chi_{5520}(2987,\cdot)\) \(\chi_{5520}(3227,\cdot)\) \(\chi_{5520}(3467,\cdot)\) \(\chi_{5520}(3947,\cdot)\) \(\chi_{5520}(4403,\cdot)\) \(\chi_{5520}(4427,\cdot)\) \(\chi_{5520}(4643,\cdot)\) \(\chi_{5520}(4667,\cdot)\) \(\chi_{5520}(4883,\cdot)\) \(\chi_{5520}(5123,\cdot)\) \(\chi_{5520}(5387,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{44})\)
Fixed field: Number field defined by a degree 44 polynomial

Values on generators

\((4831,1381,1841,4417,1201)\) → \((-1,-i,-1,-i,e\left(\frac{1}{22}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(e\left(\frac{27}{44}\right)\)\(e\left(\frac{7}{44}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{25}{44}\right)\)\(e\left(\frac{41}{44}\right)\)\(e\left(\frac{3}{44}\right)\)\(e\left(\frac{17}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{8}{11}\right)\)
value at e.g. 2