sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(55)
sage: chi = H[16]
pari: [g,chi] = znchar(Mod(16,55))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 11 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 5 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | No |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 55.g |
Orbit index | = | 7 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{55}(16,\cdot)\) \(\chi_{55}(26,\cdot)\) \(\chi_{55}(31,\cdot)\) \(\chi_{55}(36,\cdot)\)
Inducing primitive character
Values on generators
\((12,46)\) → \((1,e\left(\frac{2}{5}\right))\)
Values
-1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 12 | 13 | 14 |
\(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{5})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{55}(16,\cdot)) = \sum_{r\in \Z/55\Z} \chi_{55}(16,r) e\left(\frac{2r}{55}\right) = 1.8246828261+-2.7695726356i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{55}(16,\cdot),\chi_{55}(1,\cdot)) = \sum_{r\in \Z/55\Z} \chi_{55}(16,r) \chi_{55}(1,1-r) = -3 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{55}(16,·))
= \sum_{r \in \Z/55\Z}
\chi_{55}(16,r) e\left(\frac{1 r + 2 r^{-1}}{55}\right)
= 0.5303097603+1.6321256188i \)