Properties

Modulus $55$
Structure \(C_{2}\times C_{20}\)
Order $40$

Learn more

Show commands: PariGP / SageMath

sage: H = DirichletGroup(55)
 
pari: g = idealstar(,55,2)
 

Character group

sage: G.order()
 
pari: g.no
 
Order = 40
sage: H.invariants()
 
pari: g.cyc
 
Structure = \(C_{2}\times C_{20}\)
sage: H.gens()
 
pari: g.gen
 
Generators = $\chi_{55}(12,\cdot)$, $\chi_{55}(46,\cdot)$

First 32 of 40 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(12\) \(13\) \(14\)
\(\chi_{55}(1,\cdot)\) 55.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{55}(2,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{55}(3,\cdot)\) 55.k 20 yes \(-1\) \(1\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{55}(4,\cdot)\) 55.j 10 yes \(1\) \(1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{55}(6,\cdot)\) 55.i 10 no \(-1\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{55}(7,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{55}(8,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(-i\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{55}(9,\cdot)\) 55.j 10 yes \(1\) \(1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{55}(12,\cdot)\) 55.f 4 no \(-1\) \(1\) \(i\) \(-i\) \(-1\) \(1\) \(i\) \(-i\) \(-1\) \(i\) \(-i\) \(-1\)
\(\chi_{55}(13,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(-i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{55}(14,\cdot)\) 55.j 10 yes \(1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{55}(16,\cdot)\) 55.g 5 no \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{55}(17,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{55}(18,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(-i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{55}(19,\cdot)\) 55.h 10 yes \(-1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(-1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{55}(21,\cdot)\) 55.c 2 no \(-1\) \(1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(1\)
\(\chi_{55}(23,\cdot)\) 55.f 4 no \(-1\) \(1\) \(-i\) \(i\) \(-1\) \(1\) \(-i\) \(i\) \(-1\) \(-i\) \(i\) \(-1\)
\(\chi_{55}(24,\cdot)\) 55.h 10 yes \(-1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(-1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{55}(26,\cdot)\) 55.g 5 no \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{55}(27,\cdot)\) 55.k 20 yes \(-1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{55}(28,\cdot)\) 55.l 20 yes \(1\) \(1\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{55}(29,\cdot)\) 55.h 10 yes \(-1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{55}(31,\cdot)\) 55.g 5 no \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{55}(32,\cdot)\) 55.e 4 yes \(1\) \(1\) \(-i\) \(-i\) \(-1\) \(-1\) \(-i\) \(i\) \(-1\) \(i\) \(i\) \(-1\)
\(\chi_{55}(34,\cdot)\) 55.b 2 no \(1\) \(1\) \(-1\) \(-1\) \(1\) \(1\) \(-1\) \(-1\) \(1\) \(-1\) \(-1\) \(1\)
\(\chi_{55}(36,\cdot)\) 55.g 5 no \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{55}(37,\cdot)\) 55.k 20 yes \(-1\) \(1\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(i\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{55}(38,\cdot)\) 55.k 20 yes \(-1\) \(1\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(-i\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{55}(39,\cdot)\) 55.h 10 yes \(-1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(-1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{55}(41,\cdot)\) 55.i 10 no \(-1\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{2}{5}\right)\)
\(\chi_{55}(42,\cdot)\) 55.k 20 yes \(-1\) \(1\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(i\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{55}(43,\cdot)\) 55.e 4 yes \(1\) \(1\) \(i\) \(i\) \(-1\) \(-1\) \(i\) \(-i\) \(-1\) \(-i\) \(-i\) \(-1\)
Click here to search among the remaining 8 characters.