Properties

Label 547.464
Modulus $547$
Conductor $547$
Order $39$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(547, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([46]))
 
pari: [g,chi] = znchar(Mod(464,547))
 

Basic properties

Modulus: \(547\)
Conductor: \(547\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(39\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 547.j

\(\chi_{547}(11,\cdot)\) \(\chi_{547}(21,\cdot)\) \(\chi_{547}(47,\cdot)\) \(\chi_{547}(54,\cdot)\) \(\chi_{547}(96,\cdot)\) \(\chi_{547}(121,\cdot)\) \(\chi_{547}(129,\cdot)\) \(\chi_{547}(136,\cdot)\) \(\chi_{547}(181,\cdot)\) \(\chi_{547}(199,\cdot)\) \(\chi_{547}(217,\cdot)\) \(\chi_{547}(231,\cdot)\) \(\chi_{547}(233,\cdot)\) \(\chi_{547}(239,\cdot)\) \(\chi_{547}(296,\cdot)\) \(\chi_{547}(302,\cdot)\) \(\chi_{547}(325,\cdot)\) \(\chi_{547}(402,\cdot)\) \(\chi_{547}(419,\cdot)\) \(\chi_{547}(441,\cdot)\) \(\chi_{547}(445,\cdot)\) \(\chi_{547}(464,\cdot)\) \(\chi_{547}(488,\cdot)\) \(\chi_{547}(521,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Values on generators

\(2\) → \(e\left(\frac{23}{39}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 547 }(464, a) \) \(1\)\(1\)\(e\left(\frac{23}{39}\right)\)\(1\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{22}{39}\right)\)\(e\left(\frac{23}{39}\right)\)\(e\left(\frac{29}{39}\right)\)\(e\left(\frac{10}{13}\right)\)\(1\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{11}{39}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 547 }(464,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 547 }(464,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 547 }(464,·),\chi_{ 547 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 547 }(464,·)) \;\) at \(\; a,b = \) e.g. 1,2