Properties

Label 547.14
Modulus $547$
Conductor $547$
Order $21$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(547)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([4]))
 
pari: [g,chi] = znchar(Mod(14,547))
 

Basic properties

Modulus: \(547\)
Conductor: \(547\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 547.h

\(\chi_{547}(13,\cdot)\) \(\chi_{547}(14,\cdot)\) \(\chi_{547}(117,\cdot)\) \(\chi_{547}(123,\cdot)\) \(\chi_{547}(126,\cdot)\) \(\chi_{547}(169,\cdot)\) \(\chi_{547}(178,\cdot)\) \(\chi_{547}(196,\cdot)\) \(\chi_{547}(360,\cdot)\) \(\chi_{547}(427,\cdot)\) \(\chi_{547}(505,\cdot)\) \(\chi_{547}(508,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\(2\) → \(e\left(\frac{4}{21}\right)\)

Values

\(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\(1\)\(1\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 21.21.5751041833096032178484453766738406083912533868194672401.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 547 }(14,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{547}(14,\cdot)) = \sum_{r\in \Z/547\Z} \chi_{547}(14,r) e\left(\frac{2r}{547}\right) = -21.6386833515+-8.8750990313i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 547 }(14,·),\chi_{ 547 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{547}(14,\cdot),\chi_{547}(1,\cdot)) = \sum_{r\in \Z/547\Z} \chi_{547}(14,r) \chi_{547}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 547 }(14,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{547}(14,·)) = \sum_{r \in \Z/547\Z} \chi_{547}(14,r) e\left(\frac{1 r + 2 r^{-1}}{547}\right) = 23.6208303861+16.1044094737i \)