sage: H = DirichletGroup(547)
pari: g = idealstar(,547,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 546 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{546}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{547}(2,\cdot)$ |
First 32 of 546 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{547}(1,\cdot)\) | 547.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{547}(2,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{546}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{273}\right)\) | \(e\left(\frac{179}{546}\right)\) | \(e\left(\frac{215}{273}\right)\) | \(e\left(\frac{103}{546}\right)\) | \(e\left(\frac{1}{182}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{30}{91}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{547}(3,\cdot)\) | 547.g | 14 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) |
\(\chi_{547}(4,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{273}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{273}\right)\) | \(e\left(\frac{179}{273}\right)\) | \(e\left(\frac{157}{273}\right)\) | \(e\left(\frac{103}{273}\right)\) | \(e\left(\frac{1}{91}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{60}{91}\right)\) | \(e\left(\frac{10}{39}\right)\) |
\(\chi_{547}(5,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{179}{546}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{179}{273}\right)\) | \(e\left(\frac{373}{546}\right)\) | \(e\left(\frac{265}{273}\right)\) | \(e\left(\frac{419}{546}\right)\) | \(e\left(\frac{179}{182}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{91}\right)\) | \(e\left(\frac{37}{39}\right)\) |
\(\chi_{547}(6,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{215}{273}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{157}{273}\right)\) | \(e\left(\frac{265}{273}\right)\) | \(e\left(\frac{176}{273}\right)\) | \(e\left(\frac{32}{273}\right)\) | \(e\left(\frac{33}{91}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{69}{91}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{547}(7,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{103}{546}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{103}{273}\right)\) | \(e\left(\frac{419}{546}\right)\) | \(e\left(\frac{32}{273}\right)\) | \(e\left(\frac{235}{546}\right)\) | \(e\left(\frac{103}{182}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{87}{91}\right)\) | \(e\left(\frac{8}{39}\right)\) |
\(\chi_{547}(8,\cdot)\) | 547.n | 182 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{182}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{91}\right)\) | \(e\left(\frac{179}{182}\right)\) | \(e\left(\frac{33}{91}\right)\) | \(e\left(\frac{103}{182}\right)\) | \(e\left(\frac{3}{182}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{90}{91}\right)\) | \(e\left(\frac{5}{13}\right)\) |
\(\chi_{547}(9,\cdot)\) | 547.e | 7 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) |
\(\chi_{547}(10,\cdot)\) | 547.m | 91 | yes | \(1\) | \(1\) | \(e\left(\frac{30}{91}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{60}{91}\right)\) | \(e\left(\frac{1}{91}\right)\) | \(e\left(\frac{69}{91}\right)\) | \(e\left(\frac{87}{91}\right)\) | \(e\left(\frac{90}{91}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{31}{91}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{547}(11,\cdot)\) | 547.j | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{39}\right)\) | \(1\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{5}{39}\right)\) | \(e\left(\frac{8}{39}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{38}{39}\right)\) |
\(\chi_{547}(12,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{431}{546}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{158}{273}\right)\) | \(e\left(\frac{163}{546}\right)\) | \(e\left(\frac{118}{273}\right)\) | \(e\left(\frac{167}{546}\right)\) | \(e\left(\frac{67}{182}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{8}{91}\right)\) | \(e\left(\frac{10}{39}\right)\) |
\(\chi_{547}(13,\cdot)\) | 547.h | 21 | yes | \(1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{547}(14,\cdot)\) | 547.h | 21 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{547}(15,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{31}{273}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{62}{273}\right)\) | \(e\left(\frac{89}{273}\right)\) | \(e\left(\frac{226}{273}\right)\) | \(e\left(\frac{190}{273}\right)\) | \(e\left(\frac{31}{91}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{40}{91}\right)\) | \(e\left(\frac{37}{39}\right)\) |
\(\chi_{547}(16,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{273}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{4}{273}\right)\) | \(e\left(\frac{85}{273}\right)\) | \(e\left(\frac{41}{273}\right)\) | \(e\left(\frac{206}{273}\right)\) | \(e\left(\frac{2}{91}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{29}{91}\right)\) | \(e\left(\frac{20}{39}\right)\) |
\(\chi_{547}(17,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{151}{546}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{151}{273}\right)\) | \(e\left(\frac{275}{546}\right)\) | \(e\left(\frac{251}{273}\right)\) | \(e\left(\frac{265}{546}\right)\) | \(e\left(\frac{151}{182}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{71}{91}\right)\) | \(e\left(\frac{14}{39}\right)\) |
\(\chi_{547}(18,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{313}{546}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{40}{273}\right)\) | \(e\left(\frac{335}{546}\right)\) | \(e\left(\frac{137}{273}\right)\) | \(e\left(\frac{25}{546}\right)\) | \(e\left(\frac{131}{182}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{17}{91}\right)\) | \(e\left(\frac{5}{39}\right)\) |
\(\chi_{547}(19,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{115}{273}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{230}{273}\right)\) | \(e\left(\frac{110}{273}\right)\) | \(e\left(\frac{37}{273}\right)\) | \(e\left(\frac{106}{273}\right)\) | \(e\left(\frac{24}{91}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{75}{91}\right)\) | \(e\left(\frac{19}{39}\right)\) |
\(\chi_{547}(20,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{181}{546}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{181}{273}\right)\) | \(e\left(\frac{185}{546}\right)\) | \(e\left(\frac{149}{273}\right)\) | \(e\left(\frac{79}{546}\right)\) | \(e\left(\frac{181}{182}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{61}{91}\right)\) | \(e\left(\frac{8}{39}\right)\) |
\(\chi_{547}(21,\cdot)\) | 547.j | 39 | yes | \(1\) | \(1\) | \(e\left(\frac{38}{39}\right)\) | \(1\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{8}{39}\right)\) |
\(\chi_{547}(22,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{71}{546}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{71}{273}\right)\) | \(e\left(\frac{151}{546}\right)\) | \(e\left(\frac{250}{273}\right)\) | \(e\left(\frac{215}{546}\right)\) | \(e\left(\frac{71}{182}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{37}{91}\right)\) | \(e\left(\frac{4}{39}\right)\) |
\(\chi_{547}(23,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{293}{546}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{20}{273}\right)\) | \(e\left(\frac{31}{546}\right)\) | \(e\left(\frac{205}{273}\right)\) | \(e\left(\frac{149}{546}\right)\) | \(e\left(\frac{111}{182}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{54}{91}\right)\) | \(e\left(\frac{22}{39}\right)\) |
\(\chi_{547}(24,\cdot)\) | 547.m | 91 | yes | \(1\) | \(1\) | \(e\left(\frac{72}{91}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{53}{91}\right)\) | \(e\left(\frac{57}{91}\right)\) | \(e\left(\frac{20}{91}\right)\) | \(e\left(\frac{45}{91}\right)\) | \(e\left(\frac{34}{91}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{38}{91}\right)\) | \(e\left(\frac{5}{13}\right)\) |
\(\chi_{547}(25,\cdot)\) | 547.o | 273 | yes | \(1\) | \(1\) | \(e\left(\frac{179}{273}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{85}{273}\right)\) | \(e\left(\frac{100}{273}\right)\) | \(e\left(\frac{257}{273}\right)\) | \(e\left(\frac{146}{273}\right)\) | \(e\left(\frac{88}{91}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{2}{91}\right)\) | \(e\left(\frac{35}{39}\right)\) |
\(\chi_{547}(26,\cdot)\) | 547.l | 78 | yes | \(-1\) | \(1\) | \(e\left(\frac{41}{78}\right)\) | \(-1\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{7}{78}\right)\) | \(e\left(\frac{1}{39}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{31}{39}\right)\) |
\(\chi_{547}(27,\cdot)\) | 547.g | 14 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) |
\(\chi_{547}(28,\cdot)\) | 547.i | 26 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(-1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(1\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{547}(29,\cdot)\) | 547.m | 91 | yes | \(1\) | \(1\) | \(e\left(\frac{53}{91}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{15}{91}\right)\) | \(e\left(\frac{23}{91}\right)\) | \(e\left(\frac{40}{91}\right)\) | \(e\left(\frac{90}{91}\right)\) | \(e\left(\frac{68}{91}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{76}{91}\right)\) | \(e\left(\frac{10}{13}\right)\) |
\(\chi_{547}(30,\cdot)\) | 547.i | 26 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{26}\right)\) | \(-1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{547}(31,\cdot)\) | 547.n | 182 | yes | \(-1\) | \(1\) | \(e\left(\frac{101}{182}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{10}{91}\right)\) | \(e\left(\frac{61}{182}\right)\) | \(e\left(\frac{57}{91}\right)\) | \(e\left(\frac{29}{182}\right)\) | \(e\left(\frac{121}{182}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{81}{91}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{547}(32,\cdot)\) | 547.p | 546 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{546}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{5}{273}\right)\) | \(e\left(\frac{349}{546}\right)\) | \(e\left(\frac{256}{273}\right)\) | \(e\left(\frac{515}{546}\right)\) | \(e\left(\frac{5}{182}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{59}{91}\right)\) | \(e\left(\frac{25}{39}\right)\) |