Properties

Label 5408.ct
Modulus $5408$
Conductor $2704$
Order $52$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5408, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([0,39,28])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(105,5408)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5408\)
Conductor: \(2704\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2704.cd
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(15\) \(17\) \(19\) \(21\) \(23\)
\(\chi_{5408}(105,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(i\) \(e\left(\frac{7}{52}\right)\) \(-1\)
\(\chi_{5408}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(-i\) \(e\left(\frac{21}{52}\right)\) \(-1\)
\(\chi_{5408}(521,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(i\) \(e\left(\frac{35}{52}\right)\) \(-1\)
\(\chi_{5408}(729,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(-i\) \(e\left(\frac{49}{52}\right)\) \(-1\)
\(\chi_{5408}(937,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(i\) \(e\left(\frac{11}{52}\right)\) \(-1\)
\(\chi_{5408}(1145,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(-i\) \(e\left(\frac{25}{52}\right)\) \(-1\)
\(\chi_{5408}(1561,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(-i\) \(e\left(\frac{1}{52}\right)\) \(-1\)
\(\chi_{5408}(1769,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(i\) \(e\left(\frac{15}{52}\right)\) \(-1\)
\(\chi_{5408}(1977,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(-i\) \(e\left(\frac{29}{52}\right)\) \(-1\)
\(\chi_{5408}(2185,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(i\) \(e\left(\frac{43}{52}\right)\) \(-1\)
\(\chi_{5408}(2393,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(-i\) \(e\left(\frac{5}{52}\right)\) \(-1\)
\(\chi_{5408}(2601,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(i\) \(e\left(\frac{19}{52}\right)\) \(-1\)
\(\chi_{5408}(2809,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(-i\) \(e\left(\frac{33}{52}\right)\) \(-1\)
\(\chi_{5408}(3017,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(i\) \(e\left(\frac{47}{52}\right)\) \(-1\)
\(\chi_{5408}(3225,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(-i\) \(e\left(\frac{9}{52}\right)\) \(-1\)
\(\chi_{5408}(3433,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(i\) \(e\left(\frac{23}{52}\right)\) \(-1\)
\(\chi_{5408}(3641,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(-i\) \(e\left(\frac{37}{52}\right)\) \(-1\)
\(\chi_{5408}(3849,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(i\) \(e\left(\frac{51}{52}\right)\) \(-1\)
\(\chi_{5408}(4265,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(i\) \(e\left(\frac{27}{52}\right)\) \(-1\)
\(\chi_{5408}(4473,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(-i\) \(e\left(\frac{41}{52}\right)\) \(-1\)
\(\chi_{5408}(4681,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(i\) \(e\left(\frac{3}{52}\right)\) \(-1\)
\(\chi_{5408}(4889,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(-i\) \(e\left(\frac{17}{52}\right)\) \(-1\)
\(\chi_{5408}(5097,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(i\) \(e\left(\frac{31}{52}\right)\) \(-1\)
\(\chi_{5408}(5305,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(-i\) \(e\left(\frac{45}{52}\right)\) \(-1\)