Properties

Label 5328.lf
Modulus $5328$
Conductor $592$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,9,0,7])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(91,5328)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5328\)
Conductor: \(592\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 592.cd
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.4886860176107258124616704873602845327686728999915307588219200292503475176863258640384.2

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{5328}(91,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\)
\(\chi_{5328}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\)
\(\chi_{5328}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\)
\(\chi_{5328}(523,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\)
\(\chi_{5328}(883,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\)
\(\chi_{5328}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\)
\(\chi_{5328}(1243,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\)
\(\chi_{5328}(1315,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\)
\(\chi_{5328}(2107,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\)
\(\chi_{5328}(2683,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\)
\(\chi_{5328}(4051,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\)
\(\chi_{5328}(4627,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\)