Properties

Label 5328.gn
Modulus $5328$
Conductor $592$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5328, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,9,0,2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(397,5328)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5328\)
Conductor: \(592\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 592.bk
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.41305425239182691803332608.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{5328}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(-1\)
\(\chi_{5328}(973,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(-1\)
\(\chi_{5328}(3061,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(i\) \(-1\)
\(\chi_{5328}(3637,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(i\) \(-1\)