# Properties

 Label 532.bx Modulus $532$ Conductor $133$ Order $18$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(532, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,3,10]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(17,532))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$532$$ Conductor: $$133$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 133.x sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.0.1369393352927188877370217151752183.2

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$3$$ $$5$$ $$9$$ $$11$$ $$13$$ $$15$$ $$17$$ $$23$$ $$25$$ $$27$$
$$\chi_{532}(17,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{532}(61,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{532}(73,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{532}(157,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{1}{6}\right)$$
$$\chi_{532}(313,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$
$$\chi_{532}(481,\cdot)$$ $$-1$$ $$1$$ $$e\left(\frac{17}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{2}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$