sage: H = DirichletGroup(532)
pari: g = idealstar(,532,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 216 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{2}\times C_{6}\times C_{18}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{532}(267,\cdot)$, $\chi_{532}(381,\cdot)$, $\chi_{532}(477,\cdot)$ |
First 32 of 216 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{532}(1,\cdot)\) | 532.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{532}(3,\cdot)\) | 532.cg | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(5,\cdot)\) | 532.ck | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(9,\cdot)\) | 532.bp | 9 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(11,\cdot)\) | 532.bk | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) |
\(\chi_{532}(13,\cdot)\) | 532.bv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(15,\cdot)\) | 532.cb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(17,\cdot)\) | 532.bx | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(23,\cdot)\) | 532.cf | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{532}(25,\cdot)\) | 532.bq | 9 | no | \(1\) | \(1\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(27,\cdot)\) | 532.bf | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{532}(29,\cdot)\) | 532.bz | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{532}(31,\cdot)\) | 532.p | 6 | yes | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{532}(33,\cdot)\) | 532.cj | 18 | no | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{532}(37,\cdot)\) | 532.bc | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{532}(39,\cdot)\) | 532.bd | 6 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{532}(41,\cdot)\) | 532.bv | 18 | no | \(1\) | \(1\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{532}(43,\cdot)\) | 532.ci | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(45,\cdot)\) | 532.o | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{532}(47,\cdot)\) | 532.cd | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(51,\cdot)\) | 532.ce | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(53,\cdot)\) | 532.cl | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{532}(55,\cdot)\) | 532.cc | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{532}(59,\cdot)\) | 532.cg | 18 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(61,\cdot)\) | 532.bx | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{6}\right)\) |
\(\chi_{532}(65,\cdot)\) | 532.m | 6 | no | \(-1\) | \(1\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) |
\(\chi_{532}(67,\cdot)\) | 532.bs | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(-1\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) |
\(\chi_{532}(69,\cdot)\) | 532.x | 6 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) |
\(\chi_{532}(71,\cdot)\) | 532.cb | 18 | no | \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |
\(\chi_{532}(73,\cdot)\) | 532.bx | 18 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) |
\(\chi_{532}(75,\cdot)\) | 532.bh | 6 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) |
\(\chi_{532}(79,\cdot)\) | 532.bs | 18 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(-1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) |