Properties

Conductor 53
Order 52
Real No
Primitive Yes
Parity Odd
Orbit Label 53.f

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(53)
 
sage: chi = H[41]
 
pari: [g,chi] = znchar(Mod(41,53))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 53
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 52
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = Yes
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Odd
Orbit label = 53.f
Orbit index = 6

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{53}(2,\cdot)\) \(\chi_{53}(3,\cdot)\) \(\chi_{53}(5,\cdot)\) \(\chi_{53}(8,\cdot)\) \(\chi_{53}(12,\cdot)\) \(\chi_{53}(14,\cdot)\) \(\chi_{53}(18,\cdot)\) \(\chi_{53}(19,\cdot)\) \(\chi_{53}(20,\cdot)\) \(\chi_{53}(21,\cdot)\) \(\chi_{53}(22,\cdot)\) \(\chi_{53}(26,\cdot)\) \(\chi_{53}(27,\cdot)\) \(\chi_{53}(31,\cdot)\) \(\chi_{53}(32,\cdot)\) \(\chi_{53}(33,\cdot)\) \(\chi_{53}(34,\cdot)\) \(\chi_{53}(35,\cdot)\) \(\chi_{53}(39,\cdot)\) \(\chi_{53}(41,\cdot)\) \(\chi_{53}(45,\cdot)\) \(\chi_{53}(48,\cdot)\) \(\chi_{53}(50,\cdot)\) \(\chi_{53}(51,\cdot)\)

Values on generators

\(2\) → \(e\left(\frac{45}{52}\right)\)

Values

-11234567891011
\(-1\)\(1\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{37}{52}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{35}{52}\right)\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{3}{26}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{11}{26}\right)\)\(e\left(\frac{7}{13}\right)\)\(e\left(\frac{5}{26}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{52})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 53 }(41,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{53}(41,\cdot)) = \sum_{r\in \Z/53\Z} \chi_{53}(41,r) e\left(\frac{2r}{53}\right) = 5.8938593564+-4.2734554973i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 53 }(41,·),\chi_{ 53 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{53}(41,\cdot),\chi_{53}(1,\cdot)) = \sum_{r\in \Z/53\Z} \chi_{53}(41,r) \chi_{53}(1,1-r) = -1 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 53 }(41,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{53}(41,·)) = \sum_{r \in \Z/53\Z} \chi_{53}(41,r) e\left(\frac{1 r + 2 r^{-1}}{53}\right) = 0.1262777615+0.2805776763i \)