sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(53)
sage: chi = H[38]
pari: [g,chi] = znchar(Mod(38,53))
Basic properties
sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
Conductor | = | 53 |
sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
Order | = | 26 |
Real | = | No |
sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
Primitive | = | Yes |
sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
Parity | = | Even |
Orbit label | = | 53.e |
Orbit index | = | 5 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(\chi_{53}(4,\cdot)\) \(\chi_{53}(6,\cdot)\) \(\chi_{53}(7,\cdot)\) \(\chi_{53}(9,\cdot)\) \(\chi_{53}(11,\cdot)\) \(\chi_{53}(17,\cdot)\) \(\chi_{53}(25,\cdot)\) \(\chi_{53}(29,\cdot)\) \(\chi_{53}(37,\cdot)\) \(\chi_{53}(38,\cdot)\) \(\chi_{53}(40,\cdot)\) \(\chi_{53}(43,\cdot)\)
Values on generators
\(2\) → \(e\left(\frac{19}{26}\right)\)
Values
-1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
\(1\) | \(1\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) |
Related number fields
Field of values | \(\Q(\zeta_{13})\) |
Gauss sum
sage: chi.sage_character().gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{53}(38,\cdot)) = \sum_{r\in \Z/53\Z} \chi_{53}(38,r) e\left(\frac{2r}{53}\right) = -7.115717931+1.5383622221i \)
Jacobi sum
sage: chi.sage_character().jacobi_sum(n)
\( \displaystyle J(\chi_{53}(38,\cdot),\chi_{53}(1,\cdot)) = \sum_{r\in \Z/53\Z} \chi_{53}(38,r) \chi_{53}(1,1-r) = -1 \)
Kloosterman sum
sage: chi.sage_character().kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{53}(38,·))
= \sum_{r \in \Z/53\Z}
\chi_{53}(38,r) e\left(\frac{1 r + 2 r^{-1}}{53}\right)
= 5.8955450896+-6.6546947402i \)