sage: H = DirichletGroup(53)
pari: g = idealstar(,53,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 52 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{52}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{53}(2,\cdot)$ |
First 32 of 52 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{53}(1,\cdot)\) | 53.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{53}(2,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) |
\(\chi_{53}(3,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) |
\(\chi_{53}(4,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) |
\(\chi_{53}(5,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) |
\(\chi_{53}(6,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) |
\(\chi_{53}(7,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) |
\(\chi_{53}(8,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{3}{52}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) |
\(\chi_{53}(9,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) |
\(\chi_{53}(10,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) |
\(\chi_{53}(11,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) |
\(\chi_{53}(12,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{11}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{5}{26}\right)\) |
\(\chi_{53}(13,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) |
\(\chi_{53}(14,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{45}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{19}{26}\right)\) |
\(\chi_{53}(15,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) |
\(\chi_{53}(16,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) |
\(\chi_{53}(17,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{9}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) |
\(\chi_{53}(18,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) |
\(\chi_{53}(19,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{7}{26}\right)\) |
\(\chi_{53}(20,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) |
\(\chi_{53}(21,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{1}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) |
\(\chi_{53}(22,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{52}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) |
\(\chi_{53}(23,\cdot)\) | 53.c | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-1\) | \(1\) | \(-1\) |
\(\chi_{53}(24,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{53}(25,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{21}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{53}(26,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{25}{52}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{23}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{53}(27,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{25}{26}\right)\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{49}{52}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{23}{26}\right)\) |
\(\chi_{53}(28,\cdot)\) | 53.d | 13 | yes | \(1\) | \(1\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) |
\(\chi_{53}(29,\cdot)\) | 53.e | 26 | yes | \(1\) | \(1\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{4}{13}\right)\) |
\(\chi_{53}(30,\cdot)\) | 53.c | 4 | yes | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(-1\) |
\(\chi_{53}(31,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{43}{52}\right)\) | \(e\left(\frac{11}{26}\right)\) | \(e\left(\frac{23}{26}\right)\) | \(e\left(\frac{47}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{21}{26}\right)\) |
\(\chi_{53}(32,\cdot)\) | 53.f | 52 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{52}\right)\) | \(e\left(\frac{33}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{27}{52}\right)\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{15}{52}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{15}{26}\right)\) |