Properties

Label 5292.881
Modulus $5292$
Conductor $63$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,5,3]))
 
pari: [g,chi] = znchar(Mod(881,5292))
 

Basic properties

Modulus: \(5292\)
Conductor: \(63\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{63}(41,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5292.x

\(\chi_{5292}(881,\cdot)\) \(\chi_{5292}(4409,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: 6.6.6751269.1

Values on generators

\((2647,785,1081)\) → \((1,e\left(\frac{5}{6}\right),-1)\)

Values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 5292 }(881, a) \) \(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{6}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5292 }(881,a) \;\) at \(\;a = \) e.g. 2