# Properties

 Label 5269.5268 Modulus $5269$ Conductor $5269$ Order $2$ Real yes Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(5269, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([1,1]))

pari: [g,chi] = znchar(Mod(5268,5269))

## Kronecker symbol representation

sage: kronecker_character(5269)

pari: znchartokronecker(g,chi)

$$\displaystyle\left(\frac{5269}{\bullet}\right)$$

## Basic properties

 Modulus: $$5269$$ Conductor: $$5269$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$2$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 5269.c

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q(\sqrt{5269})$$

## Values on generators

$$(959,4324)$$ → $$(-1,-1)$$

## Values

 $$-1$$ $$1$$ $$2$$ $$3$$ $$4$$ $$5$$ $$6$$ $$7$$ $$8$$ $$9$$ $$10$$ $$12$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$ $$-1$$ $$-1$$ $$-1$$ $$1$$ $$-1$$ $$1$$
 value at e.g. 2