Properties

Label 525.64
Modulus $525$
Conductor $25$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(525)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,3,0]))
 
pari: [g,chi] = znchar(Mod(64,525))
 

Basic properties

Modulus: \(525\)
Conductor: \(25\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25}(14,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 525.z

\(\chi_{525}(64,\cdot)\) \(\chi_{525}(169,\cdot)\) \(\chi_{525}(379,\cdot)\) \(\chi_{525}(484,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((176,127,451)\) → \((1,e\left(\frac{3}{10}\right),1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\(1\)\(1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{10}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{25})^+\)

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 525 }(64,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{525}(64,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(64,r) e\left(\frac{2r}{525}\right) = -4.9605735066+-0.6266661678i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 525 }(64,·),\chi_{ 525 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{525}(64,\cdot),\chi_{525}(1,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(64,r) \chi_{525}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 525 }(64,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{525}(64,·)) = \sum_{r \in \Z/525\Z} \chi_{525}(64,r) e\left(\frac{1 r + 2 r^{-1}}{525}\right) = -0.0 \)