![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,3,25]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(525, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([15,3,25]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(404,525))
        pari:[g,chi] = znchar(Mod(404,525))
         
     
    
  
   | Modulus: | \(525\) |  | 
   | Conductor: | \(525\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(30\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{525}(59,\cdot)\)
  \(\chi_{525}(89,\cdot)\)
  \(\chi_{525}(164,\cdot)\)
  \(\chi_{525}(194,\cdot)\)
  \(\chi_{525}(269,\cdot)\)
  \(\chi_{525}(404,\cdot)\)
  \(\chi_{525}(479,\cdot)\)
  \(\chi_{525}(509,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((176,127,451)\) → \((-1,e\left(\frac{1}{10}\right),e\left(\frac{5}{6}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) | 
    
    
      | \( \chi_{ 525 }(404, a) \) | \(1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)