Properties

Label 525.13
Modulus $525$
Conductor $175$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(525)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,19,10]))
 
pari: [g,chi] = znchar(Mod(13,525))
 

Basic properties

Modulus: \(525\)
Conductor: \(175\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{175}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 525.bh

\(\chi_{525}(13,\cdot)\) \(\chi_{525}(97,\cdot)\) \(\chi_{525}(202,\cdot)\) \(\chi_{525}(223,\cdot)\) \(\chi_{525}(328,\cdot)\) \(\chi_{525}(412,\cdot)\) \(\chi_{525}(433,\cdot)\) \(\chi_{525}(517,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((176,127,451)\) → \((1,e\left(\frac{19}{20}\right),-1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\(1\)\(1\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{9}{20}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.20.822111175511963665485382080078125.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 525 }(13,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{525}(13,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(13,r) e\left(\frac{2r}{525}\right) = -1.6580028351+-13.1244438586i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 525 }(13,·),\chi_{ 525 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{525}(13,\cdot),\chi_{525}(1,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(13,r) \chi_{525}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 525 }(13,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{525}(13,·)) = \sum_{r \in \Z/525\Z} \chi_{525}(13,r) e\left(\frac{1 r + 2 r^{-1}}{525}\right) = 0.0 \)