# Properties

 Label 525.103 Modulus $525$ Conductor $175$ Order $60$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(525)

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,21,50]))

pari: [g,chi] = znchar(Mod(103,525))

## Basic properties

 Modulus: $$525$$ Conductor: $$175$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$60$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{175}(103,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 525.bv

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(176,127,451)$$ → $$(1,e\left(\frac{7}{20}\right),e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$8$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$22$$ $$23$$ $$1$$ $$1$$ $$e\left(\frac{1}{60}\right)$$ $$e\left(\frac{1}{30}\right)$$ $$e\left(\frac{1}{20}\right)$$ $$e\left(\frac{14}{15}\right)$$ $$e\left(\frac{3}{20}\right)$$ $$e\left(\frac{1}{15}\right)$$ $$e\left(\frac{23}{60}\right)$$ $$e\left(\frac{7}{15}\right)$$ $$e\left(\frac{19}{20}\right)$$ $$e\left(\frac{31}{60}\right)$$
 value at e.g. 2

## Related number fields

 Field of values: $$\Q(\zeta_{60})$$ Fixed field: Number field defined by a degree 60 polynomial

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 525 }(103,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{525}(103,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(103,r) e\left(\frac{2r}{525}\right) = 12.6599840853+-3.8372910967i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 525 }(103,·),\chi_{ 525 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{525}(103,\cdot),\chi_{525}(1,\cdot)) = \sum_{r\in \Z/525\Z} \chi_{525}(103,r) \chi_{525}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 525 }(103,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{525}(103,·)) = \sum_{r \in \Z/525\Z} \chi_{525}(103,r) e\left(\frac{1 r + 2 r^{-1}}{525}\right) = 13.2462132127+0.6942046184i$$