Properties

Label 5245.52
Modulus $5245$
Conductor $5245$
Order $524$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5245, base_ring=CyclotomicField(524))
 
M = H._module
 
chi = DirichletCharacter(H, M([131,142]))
 
pari: [g,chi] = znchar(Mod(52,5245))
 

Basic properties

Modulus: \(5245\)
Conductor: \(5245\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(524\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5245.v

\(\chi_{5245}(2,\cdot)\) \(\chi_{5245}(8,\cdot)\) \(\chi_{5245}(13,\cdot)\) \(\chi_{5245}(32,\cdot)\) \(\chi_{5245}(38,\cdot)\) \(\chi_{5245}(42,\cdot)\) \(\chi_{5245}(43,\cdot)\) \(\chi_{5245}(52,\cdot)\) \(\chi_{5245}(73,\cdot)\) \(\chi_{5245}(97,\cdot)\) \(\chi_{5245}(122,\cdot)\) \(\chi_{5245}(128,\cdot)\) \(\chi_{5245}(152,\cdot)\) \(\chi_{5245}(163,\cdot)\) \(\chi_{5245}(168,\cdot)\) \(\chi_{5245}(172,\cdot)\) \(\chi_{5245}(208,\cdot)\) \(\chi_{5245}(247,\cdot)\) \(\chi_{5245}(257,\cdot)\) \(\chi_{5245}(262,\cdot)\) \(\chi_{5245}(273,\cdot)\) \(\chi_{5245}(287,\cdot)\) \(\chi_{5245}(292,\cdot)\) \(\chi_{5245}(303,\cdot)\) \(\chi_{5245}(338,\cdot)\) \(\chi_{5245}(373,\cdot)\) \(\chi_{5245}(388,\cdot)\) \(\chi_{5245}(443,\cdot)\) \(\chi_{5245}(488,\cdot)\) \(\chi_{5245}(497,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{524})$
Fixed field: Number field defined by a degree 524 polynomial (not computed)

Values on generators

\((4197,2101)\) → \((i,e\left(\frac{71}{262}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 5245 }(52, a) \) \(-1\)\(1\)\(e\left(\frac{399}{524}\right)\)\(e\left(\frac{11}{524}\right)\)\(e\left(\frac{137}{262}\right)\)\(e\left(\frac{205}{262}\right)\)\(e\left(\frac{185}{524}\right)\)\(e\left(\frac{149}{524}\right)\)\(e\left(\frac{11}{262}\right)\)\(e\left(\frac{36}{131}\right)\)\(e\left(\frac{285}{524}\right)\)\(e\left(\frac{361}{524}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5245 }(52,a) \;\) at \(\;a = \) e.g. 2