sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(520, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,1,3]))
pari:[g,chi] = znchar(Mod(57,520))
\(\chi_{520}(57,\cdot)\)
\(\chi_{520}(73,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((391,261,417,41)\) → \((1,1,i,-i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 520 }(57, a) \) |
\(1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(i\) | \(i\) | \(i\) | \(i\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)