# Properties

 Label 5184.l Modulus $5184$ Conductor $48$ Order $4$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(5184, base_ring=CyclotomicField(4))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([2,1,2]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(1295,5184))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$5184$$ Conductor: $$48$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$4$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 48.k sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $$\Q(\sqrt{-1})$$ Fixed field: 4.4.18432.1

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$25$$ $$29$$ $$31$$
$$\chi_{5184}(1295,\cdot)$$ $$1$$ $$1$$ $$-i$$ $$1$$ $$i$$ $$-i$$ $$-1$$ $$i$$ $$-1$$ $$-1$$ $$i$$ $$-1$$
$$\chi_{5184}(3887,\cdot)$$ $$1$$ $$1$$ $$i$$ $$1$$ $$-i$$ $$i$$ $$-1$$ $$-i$$ $$-1$$ $$-1$$ $$-i$$ $$-1$$