from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([72,99,104]))
chi.galois_orbit()
[g,chi] = znchar(Mod(35,5184))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5184\) | |
Conductor: | \(1728\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(144\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1728.ch | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{144})$ |
Fixed field: | Number field defined by a degree 144 polynomial (not computed) |
First 31 of 48 characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5184}(35,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{47}{144}\right)\) | \(e\left(\frac{13}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{41}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{5184}(179,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{143}{144}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{133}{144}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{5184}(251,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{5184}(395,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{5184}(467,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{5184}(611,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{144}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{5184}(683,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{139}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{95}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{5184}(827,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{144}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{119}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{5184}(899,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{144}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{37}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{17}{144}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{5184}(1043,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{139}{144}\right)\) | \(e\left(\frac{17}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{5184}(1115,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{53}{144}\right)\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{5184}(1259,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{25}{144}\right)\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{31}{144}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{5184}(1331,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{144}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{5184}(1475,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{55}{144}\right)\) | \(e\left(\frac{101}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{5184}(1547,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{113}{144}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{71}{144}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{5184}(1691,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{144}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{143}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{19}{144}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{5184}(1763,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{143}{144}\right)\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{137}{144}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{5184}(1907,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{144}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{41}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{5184}(1979,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{29}{144}\right)\) | \(e\left(\frac{103}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{23}{72}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{5184}(2123,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{144}\right)\) | \(e\left(\frac{29}{72}\right)\) | \(e\left(\frac{1}{144}\right)\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{7}{144}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{5184}(2195,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{103}{144}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{1}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{17}{72}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{125}{144}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{5184}(2339,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{144}\right)\) | \(e\left(\frac{35}{72}\right)\) | \(e\left(\frac{31}{144}\right)\) | \(e\left(\frac{125}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{73}{144}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{5184}(2411,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{109}{144}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{89}{144}\right)\) | \(e\left(\frac{43}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{37}{72}\right)\) | \(e\left(\frac{47}{144}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{5184}(2555,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{31}{72}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{139}{144}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{5184}(2627,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{115}{144}\right)\) | \(e\left(\frac{67}{72}\right)\) | \(e\left(\frac{119}{144}\right)\) | \(e\left(\frac{85}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{43}{72}\right)\) | \(e\left(\frac{113}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |
\(\chi_{5184}(2771,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{144}\right)\) | \(e\left(\frac{47}{72}\right)\) | \(e\left(\frac{91}{144}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{25}{72}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{61}{144}\right)\) | \(e\left(\frac{2}{9}\right)\) |
\(\chi_{5184}(2843,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{1}{72}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{49}{72}\right)\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{1}{9}\right)\) |
\(\chi_{5184}(2987,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{144}\right)\) | \(e\left(\frac{53}{72}\right)\) | \(e\left(\frac{121}{144}\right)\) | \(e\left(\frac{107}{144}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{19}{72}\right)\) | \(e\left(\frac{5}{72}\right)\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{8}{9}\right)\) |
\(\chi_{5184}(3059,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{127}{144}\right)\) | \(e\left(\frac{7}{72}\right)\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{25}{144}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{65}{72}\right)\) | \(e\left(\frac{55}{72}\right)\) | \(e\left(\frac{101}{144}\right)\) | \(e\left(\frac{7}{9}\right)\) |
\(\chi_{5184}(3203,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{144}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{7}{144}\right)\) | \(e\left(\frac{5}{144}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{49}{144}\right)\) | \(e\left(\frac{5}{9}\right)\) |
\(\chi_{5184}(3275,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{133}{144}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{65}{144}\right)\) | \(e\left(\frac{67}{144}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{59}{72}\right)\) | \(e\left(\frac{61}{72}\right)\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{4}{9}\right)\) |