from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([0,27,64]))
chi.galois_orbit()
[g,chi] = znchar(Mod(49,5184))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(5184\) | |
Conductor: | \(1296\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(108\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 1296.bv | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{108})$ |
Fixed field: | Number field defined by a degree 108 polynomial (not computed) |
First 31 of 36 characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{5184}(49,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{103}{108}\right)\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{23}{27}\right)\) |
\(\chi_{5184}(241,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{107}{108}\right)\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{10}{27}\right)\) |
\(\chi_{5184}(337,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{108}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{26}{27}\right)\) |
\(\chi_{5184}(529,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{35}{108}\right)\) | \(e\left(\frac{4}{27}\right)\) |
\(\chi_{5184}(625,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{41}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{2}{27}\right)\) |
\(\chi_{5184}(817,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{108}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{25}{27}\right)\) |
\(\chi_{5184}(913,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{35}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{5}{27}\right)\) |
\(\chi_{5184}(1105,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{17}{108}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{19}{27}\right)\) |
\(\chi_{5184}(1201,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{107}{108}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{29}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{8}{27}\right)\) |
\(\chi_{5184}(1393,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{103}{108}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{23}{108}\right)\) | \(e\left(\frac{37}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{13}{27}\right)\) |
\(\chi_{5184}(1489,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{108}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{61}{108}\right)\) | \(e\left(\frac{23}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{103}{108}\right)\) | \(e\left(\frac{11}{27}\right)\) |
\(\chi_{5184}(1681,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{29}{108}\right)\) | \(e\left(\frac{103}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{7}{27}\right)\) |
\(\chi_{5184}(1777,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{59}{108}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{31}{108}\right)\) | \(e\left(\frac{17}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{14}{27}\right)\) |
\(\chi_{5184}(1969,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{35}{108}\right)\) | \(e\left(\frac{61}{108}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{29}{108}\right)\) | \(e\left(\frac{1}{27}\right)\) |
\(\chi_{5184}(2065,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{7}{108}\right)\) | \(e\left(\frac{17}{27}\right)\) |
\(\chi_{5184}(2257,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{41}{108}\right)\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{22}{27}\right)\) |
\(\chi_{5184}(2353,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{13}{108}\right)\) | \(e\left(\frac{20}{27}\right)\) |
\(\chi_{5184}(2545,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{16}{27}\right)\) |
\(\chi_{5184}(2641,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{108}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{49}{108}\right)\) | \(e\left(\frac{107}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{23}{27}\right)\) |
\(\chi_{5184}(2833,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{73}{108}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{11}{54}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{47}{108}\right)\) | \(e\left(\frac{10}{27}\right)\) |
\(\chi_{5184}(2929,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{19}{108}\right)\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{25}{108}\right)\) | \(e\left(\frac{26}{27}\right)\) |
\(\chi_{5184}(3121,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{67}{108}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{59}{108}\right)\) | \(e\left(\frac{1}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{4}{27}\right)\) |
\(\chi_{5184}(3217,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{101}{108}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{97}{108}\right)\) | \(e\left(\frac{95}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{47}{54}\right)\) | \(e\left(\frac{31}{108}\right)\) | \(e\left(\frac{2}{27}\right)\) |
\(\chi_{5184}(3409,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{61}{108}\right)\) | \(e\left(\frac{13}{54}\right)\) | \(e\left(\frac{65}{108}\right)\) | \(e\left(\frac{67}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{17}{36}\right)\) | \(e\left(\frac{41}{54}\right)\) | \(e\left(\frac{7}{54}\right)\) | \(e\left(\frac{23}{108}\right)\) | \(e\left(\frac{25}{27}\right)\) |
\(\chi_{5184}(3505,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{108}\right)\) | \(e\left(\frac{35}{54}\right)\) | \(e\left(\frac{67}{108}\right)\) | \(e\left(\frac{89}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{37}{108}\right)\) | \(e\left(\frac{5}{27}\right)\) |
\(\chi_{5184}(3697,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{25}{108}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{1}{54}\right)\) | \(e\left(\frac{65}{108}\right)\) | \(e\left(\frac{19}{27}\right)\) |
\(\chi_{5184}(3793,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{37}{108}\right)\) | \(e\left(\frac{83}{108}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{25}{54}\right)\) | \(e\left(\frac{53}{54}\right)\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{8}{27}\right)\) |
\(\chi_{5184}(3985,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{49}{108}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{107}{108}\right)\) | \(e\left(\frac{13}{27}\right)\) |
\(\chi_{5184}(4081,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{83}{108}\right)\) | \(e\left(\frac{23}{54}\right)\) | \(e\left(\frac{7}{108}\right)\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{31}{54}\right)\) | \(e\left(\frac{29}{54}\right)\) | \(e\left(\frac{49}{108}\right)\) | \(e\left(\frac{11}{27}\right)\) |
\(\chi_{5184}(4273,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{108}\right)\) | \(e\left(\frac{49}{54}\right)\) | \(e\left(\frac{83}{108}\right)\) | \(e\left(\frac{49}{108}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{41}{108}\right)\) | \(e\left(\frac{7}{27}\right)\) |
\(\chi_{5184}(4369,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{108}\right)\) | \(e\left(\frac{17}{54}\right)\) | \(e\left(\frac{85}{108}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{37}{54}\right)\) | \(e\left(\frac{5}{54}\right)\) | \(e\left(\frac{55}{108}\right)\) | \(e\left(\frac{14}{27}\right)\) |