from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5184, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([0,9,32]))
pari: [g,chi] = znchar(Mod(5041,5184))
Basic properties
Modulus: | \(5184\) | |
Conductor: | \(432\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(36\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{432}(277,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5184.bt
\(\chi_{5184}(145,\cdot)\) \(\chi_{5184}(721,\cdot)\) \(\chi_{5184}(1009,\cdot)\) \(\chi_{5184}(1585,\cdot)\) \(\chi_{5184}(1873,\cdot)\) \(\chi_{5184}(2449,\cdot)\) \(\chi_{5184}(2737,\cdot)\) \(\chi_{5184}(3313,\cdot)\) \(\chi_{5184}(3601,\cdot)\) \(\chi_{5184}(4177,\cdot)\) \(\chi_{5184}(4465,\cdot)\) \(\chi_{5184}(5041,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{36})\) |
Fixed field: | 36.36.614667125325361522818798575155151578949632894783197825857500612833312768.1 |
Values on generators
\((2431,325,1217)\) → \((1,i,e\left(\frac{8}{9}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 5184 }(5041, a) \) | \(1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) |
sage: chi.jacobi_sum(n)