Properties

Label 5184.2783
Modulus $5184$
Conductor $648$
Order $54$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,27,37]))
 
pari: [g,chi] = znchar(Mod(2783,5184))
 

Basic properties

Modulus: \(5184\)
Conductor: \(648\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{648}(515,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5184.cd

\(\chi_{5184}(95,\cdot)\) \(\chi_{5184}(479,\cdot)\) \(\chi_{5184}(671,\cdot)\) \(\chi_{5184}(1055,\cdot)\) \(\chi_{5184}(1247,\cdot)\) \(\chi_{5184}(1631,\cdot)\) \(\chi_{5184}(1823,\cdot)\) \(\chi_{5184}(2207,\cdot)\) \(\chi_{5184}(2399,\cdot)\) \(\chi_{5184}(2783,\cdot)\) \(\chi_{5184}(2975,\cdot)\) \(\chi_{5184}(3359,\cdot)\) \(\chi_{5184}(3551,\cdot)\) \(\chi_{5184}(3935,\cdot)\) \(\chi_{5184}(4127,\cdot)\) \(\chi_{5184}(4511,\cdot)\) \(\chi_{5184}(4703,\cdot)\) \(\chi_{5184}(5087,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((2431,325,1217)\) → \((-1,-1,e\left(\frac{37}{54}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 5184 }(2783, a) \) \(1\)\(1\)\(e\left(\frac{7}{27}\right)\)\(e\left(\frac{25}{54}\right)\)\(e\left(\frac{49}{54}\right)\)\(e\left(\frac{53}{54}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{1}{27}\right)\)\(e\left(\frac{14}{27}\right)\)\(e\left(\frac{23}{27}\right)\)\(e\left(\frac{11}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5184 }(2783,a) \;\) at \(\;a = \) e.g. 2