sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(513, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([3,7]))
         
     
    
    
        
        pari:[g,chi] = znchar(Mod(413,513))
         
     
    
  \(\chi_{513}(116,\cdot)\)
  \(\chi_{513}(260,\cdot)\)
  \(\chi_{513}(314,\cdot)\)
  \(\chi_{513}(395,\cdot)\)
  \(\chi_{513}(413,\cdot)\)
  \(\chi_{513}(440,\cdot)\)
    
        
        sage:chi.galois_orbit()
         
     
    
    
        
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((191,325)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{7}{18}\right))\)
  
    
      
        | \(a\) | 
        \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |       
    
    
      | \( \chi_{ 513 }(413, a) \) | 
      \(1\) | \(1\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) |     
  
 
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.gauss_sum(a)
         
     
    
    
        
        pari:znchargauss(g,chi,a)
         
     
    
    
        
        sage:chi.jacobi_sum(n)
         
     
    
    
        
        sage:chi.kloosterman_sum(a,b)