Properties

Label 512.m
Modulus $512$
Conductor $256$
Order $64$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(512, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([0,35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(9,512)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(512\)
Conductor: \(256\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 256.m
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{512}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{39}{64}\right)\)
\(\chi_{512}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{45}{64}\right)\)
\(\chi_{512}(41,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{19}{64}\right)\)
\(\chi_{512}(57,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{25}{64}\right)\)
\(\chi_{512}(73,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{63}{64}\right)\)
\(\chi_{512}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{5}{64}\right)\)
\(\chi_{512}(105,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{43}{64}\right)\)
\(\chi_{512}(121,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{49}{64}\right)\)
\(\chi_{512}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{23}{64}\right)\)
\(\chi_{512}(153,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{29}{64}\right)\)
\(\chi_{512}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{3}{64}\right)\)
\(\chi_{512}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{9}{64}\right)\)
\(\chi_{512}(201,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{47}{64}\right)\)
\(\chi_{512}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{53}{64}\right)\)
\(\chi_{512}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{27}{64}\right)\)
\(\chi_{512}(249,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{33}{64}\right)\)
\(\chi_{512}(265,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{15}{32}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{5}{64}\right)\) \(e\left(\frac{7}{64}\right)\)
\(\chi_{512}(281,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{55}{64}\right)\) \(e\left(\frac{13}{64}\right)\)
\(\chi_{512}(297,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{51}{64}\right)\)
\(\chi_{512}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{57}{64}\right)\)
\(\chi_{512}(329,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{17}{32}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{31}{64}\right)\)
\(\chi_{512}(345,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{29}{32}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{37}{64}\right)\)
\(\chi_{512}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{23}{64}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{5}{32}\right)\) \(e\left(\frac{35}{64}\right)\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{11}{64}\right)\)
\(\chi_{512}(377,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{64}\right)\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{9}{32}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{17}{64}\right)\)
\(\chi_{512}(393,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{64}\right)\) \(e\left(\frac{51}{64}\right)\) \(e\left(\frac{31}{32}\right)\) \(e\left(\frac{25}{32}\right)\) \(e\left(\frac{47}{64}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{21}{64}\right)\) \(e\left(\frac{55}{64}\right)\)
\(\chi_{512}(409,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{17}{64}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{32}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{31}{64}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{61}{64}\right)\)
\(\chi_{512}(425,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{64}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{11}{32}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{1}{64}\right)\) \(e\left(\frac{7}{16}\right)\) \(e\left(\frac{9}{16}\right)\) \(e\left(\frac{25}{64}\right)\) \(e\left(\frac{35}{64}\right)\)
\(\chi_{512}(441,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{45}{64}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{32}\right)\) \(e\left(\frac{49}{64}\right)\) \(e\left(\frac{3}{64}\right)\) \(e\left(\frac{5}{16}\right)\) \(e\left(\frac{11}{16}\right)\) \(e\left(\frac{11}{64}\right)\) \(e\left(\frac{41}{64}\right)\)
\(\chi_{512}(457,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{43}{64}\right)\) \(e\left(\frac{23}{32}\right)\) \(e\left(\frac{1}{32}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{37}{64}\right)\) \(e\left(\frac{3}{16}\right)\) \(e\left(\frac{13}{16}\right)\) \(e\left(\frac{29}{64}\right)\) \(e\left(\frac{15}{64}\right)\)
\(\chi_{512}(473,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{13}{32}\right)\) \(e\left(\frac{27}{32}\right)\) \(e\left(\frac{61}{64}\right)\) \(e\left(\frac{39}{64}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{15}{64}\right)\) \(e\left(\frac{21}{64}\right)\)
\(\chi_{512}(489,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{64}\right)\) \(e\left(\frac{7}{64}\right)\) \(e\left(\frac{3}{32}\right)\) \(e\left(\frac{21}{32}\right)\) \(e\left(\frac{19}{64}\right)\) \(e\left(\frac{9}{64}\right)\) \(e\left(\frac{15}{16}\right)\) \(e\left(\frac{1}{16}\right)\) \(e\left(\frac{33}{64}\right)\) \(e\left(\frac{59}{64}\right)\)