sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
sage: H = DirichletGroup_conrey(5077)
sage: chi = H[1]
pari: [g,chi] = znchar(Mod(1,5077))
Basic properties
| sage: chi.conductor()
pari: znconreyconductor(g,chi)
| ||
| Conductor | = | 1 |
| sage: chi.multiplicative_order()
pari: charorder(g,chi)
| ||
| Order | = | 1 |
| Real | = | Yes |
| sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
| ||
| Primitive | = | No |
| sage: chi.is_odd()
pari: zncharisodd(g,chi)
| ||
| Parity | = | Even |
| Orbit label | = | 5077.a |
| Orbit index | = | 1 |
Galois orbit
sage: chi.sage_character().galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Inducing primitive character
Values on generators
\(2\) → \(1\)
Values
| -1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
Related number fields
| Field of values | \(\Q\) |