Properties

Label 507.p
Modulus $507$
Conductor $169$
Order $26$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(25,507))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(507\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(26\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 169.h
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 26.26.3830224792147131369362629348887201408953937846517364173.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{507}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{507}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{507}(103,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{507}(142,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{507}(181,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{507}(220,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{507}(259,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{507}(298,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{507}(376,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{507}(415,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{507}(454,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{507}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{13}\right)\)