Properties

Label 507.m
Modulus $507$
Conductor $169$
Order $13$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(26))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,2]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(40,507))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(507\)
Conductor: \(169\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(13\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 169.g
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: 13.13.542800770374370512771595361.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{507}(40,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{507}(79,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{507}(118,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{507}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{507}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{507}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{507}(274,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{507}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{507}(352,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{507}(391,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{507}(430,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{507}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{10}{13}\right)\)