sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,67]))
pari:[g,chi] = znchar(Mod(368,507))
| Modulus: | \(507\) | |
| Conductor: | \(507\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{507}(17,\cdot)\)
\(\chi_{507}(56,\cdot)\)
\(\chi_{507}(62,\cdot)\)
\(\chi_{507}(95,\cdot)\)
\(\chi_{507}(101,\cdot)\)
\(\chi_{507}(134,\cdot)\)
\(\chi_{507}(140,\cdot)\)
\(\chi_{507}(173,\cdot)\)
\(\chi_{507}(179,\cdot)\)
\(\chi_{507}(212,\cdot)\)
\(\chi_{507}(218,\cdot)\)
\(\chi_{507}(251,\cdot)\)
\(\chi_{507}(257,\cdot)\)
\(\chi_{507}(290,\cdot)\)
\(\chi_{507}(296,\cdot)\)
\(\chi_{507}(329,\cdot)\)
\(\chi_{507}(335,\cdot)\)
\(\chi_{507}(368,\cdot)\)
\(\chi_{507}(374,\cdot)\)
\(\chi_{507}(407,\cdot)\)
\(\chi_{507}(413,\cdot)\)
\(\chi_{507}(446,\cdot)\)
\(\chi_{507}(452,\cdot)\)
\(\chi_{507}(491,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((170,340)\) → \((-1,e\left(\frac{67}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 507 }(368, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{14}{39}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{71}{78}\right)\) | \(e\left(\frac{1}{13}\right)\) | \(e\left(\frac{23}{39}\right)\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{17}{39}\right)\) | \(e\left(\frac{71}{78}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)