# Properties

 Label 507.25 Modulus $507$ Conductor $169$ Order $26$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(507, base_ring=CyclotomicField(26))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,3]))

pari: [g,chi] = znchar(Mod(25,507))

## Basic properties

 Modulus: $$507$$ Conductor: $$169$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$26$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{169}(25,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 507.p

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{13})$$ Fixed field: 26.26.3830224792147131369362629348887201408953937846517364173.1

## Values on generators

$$(170,340)$$ → $$(1,e\left(\frac{3}{26}\right))$$

## Values

 $$-1$$ $$1$$ $$2$$ $$4$$ $$5$$ $$7$$ $$8$$ $$10$$ $$11$$ $$14$$ $$16$$ $$17$$ $$1$$ $$1$$ $$e\left(\frac{3}{26}\right)$$ $$e\left(\frac{3}{13}\right)$$ $$e\left(\frac{1}{26}\right)$$ $$e\left(\frac{9}{26}\right)$$ $$e\left(\frac{9}{26}\right)$$ $$e\left(\frac{2}{13}\right)$$ $$e\left(\frac{23}{26}\right)$$ $$e\left(\frac{6}{13}\right)$$ $$e\left(\frac{6}{13}\right)$$ $$e\left(\frac{11}{13}\right)$$
 value at e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 507 }(25,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{507}(25,\cdot)) = \sum_{r\in \Z/507\Z} \chi_{507}(25,r) e\left(\frac{2r}{507}\right) = 11.3966405333+6.2543252677i$$

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 507 }(25,·),\chi_{ 507 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{507}(25,\cdot),\chi_{507}(1,\cdot)) = \sum_{r\in \Z/507\Z} \chi_{507}(25,r) \chi_{507}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 507 }(25,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{507}(25,·)) = \sum_{r \in \Z/507\Z} \chi_{507}(25,r) e\left(\frac{1 r + 2 r^{-1}}{507}\right) = -0.0$$